

CSSE 230 Day 11

Size vs height in a Binary Tree

After today, you should be able to...
... use the relationship between the size and height of a tree to find the maximum and minimum number of nodes a binary tree can have ...understand the idea of mathematical induction as a proof technique

Term project starts Day 13

Preferences for partners for the term project (groups of 3) Partner preference survey on Moodle - Day 11

- Preferences balanced with experience level + work ethic
- If course grades are close, l'll honor "prearranged teammate" preferences
- If no "prearranged teammate", best to list several potential members
- If you don't want to work with someone, that preference will be honored
- Historical evidence indicates working with others in a similar current CSSE230 grade attainment level often pans out best
Some questions you might consider asking potential programming partners:
- What final grade range are you aiming for in CSSE230?
- Do you like to get it done early or to procrastinate?
- Do you prefer to work daytime, evening, late night?
- Do you normally get a lot of help on the homework?
- Survey is due Wed Oct 2, 5 PM - do it as soon as you can

Some meme humor

If pants wore pants...
would they wear them

like this? or like this?

If a binary tree wore pants, would it wear them

Other announcements

- Today:
- Size vs height of trees: patterns and proofs
- Wrapping up the BST assignment, and worktime.

Extreme Trees

- A tree with the maximum number of nodes for its height is a full binary tree.
- full binary tree - each node is either a leaf or has exactly two children
- A tree with the minimum number of nodes for its height is essentially a \qquad
- Height matters!
- Recall that the algorithms for search, insertion, and deletion in a binary search tree are $\mathrm{O}(\mathrm{h}(\mathrm{T})$)

Mathematical Induction

To prove that $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \geq \mathrm{n}_{0}$:

- Basis step: Prove that $\mathrm{P}\left(\mathrm{n}_{0}\right)$ is true (base case), and
- Induction step: Prove that if $\mathbf{P (k)}$ is true for any $\mathrm{k} \geq \mathrm{n}_{0}$, then $P(k+1)$ is also true.
[This part of the proof must work for all such k!]
$\mathrm{P}(\mathrm{n})$ - propositional function, i.e., a declarative statement parameterized by n that is either true or false

$$
(P(1) \& \forall k(P(k) \rightarrow P(k+1))) \rightarrow \forall n P(n)
$$

DIRECT MATHEMATICAL PROOFS

def: A direct proof is a mathematical argument where one starts with the premises and reasons to the conclusion by using rules of inference.

Direct proofs and implication

- In this case we're trying to prove $\mathrm{p} \mathrm{->} \mathrm{q}$
- We need only show that if p is true, that q cannot be false
- The direct proof assumes p to be true and

\mathbf{p}	\mathbf{q}	$\mathbf{p - >} \mathbf{q}$
T	T	T
T	F	F
F	T	T
F	F	T

- We don't have to show that p is true, because if p is false, then the implication is true no matter if q is true or false

To prove recursive properties (on trees), we use a technique called mathematical induction

- Actually, we use a variant called strong induction:

The former governor of California

Strong Induction

- To prove that $p(n)$ is true for all $n \geq n_{0}$:
- Prove that $p\left(\mathrm{n}_{0}\right)$ is true (base case), and
- For all $k>n_{0}$, prove that if we assume $p(j)$ is true for $n_{0} \leq j<k$, then $p(k)$ is also true
- An analogy:
- Regular induction uses the previous domino to knock down the next
- Strong induction uses all the previous dominos to knock down the next!
- Warmup: prove the arithmetic series formula
- Actual: prove the formula for $\mathrm{N}(\mathrm{T})$

